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Abstract— Abandoned minefields represented main causes 

of injured and killed persons in conflicts zone. This article 

described an automated approach for demining operations 

based on heuristic algorithm. For this aim, we chose a multi-

robotics system to operate in unknown landmines. This article 

focused on effects of minefields configuration variation on 

temporal performances for mine detection purpose. In This 

case, different mine distribution strategy was tested on a multi-

robotic system to ensure optimal time for detection. In This 

article we presented a comparative study about use of ACO 

algorithm for mine detection purpose. Especially we presented 

effect of various robot organizations on timing system 

performance and multi-robotic demining systems was 

simulated for different mine land distributions. 

Keywords— multi-robotic; ACO algorithms; minefields 

distributions; robots/mines rate; temporal performances  

I.  INTRODUCTION  

Demining operations represent an important 
development in the humanitarian area. Mines random 
dispersion and the long duration of mine activity into un-
known areas make difficult demining operations. Each year 
and referring to [1], 15 000–25 000 people are maimed or 
killed by landmines. In other hand, the single landmine cost 
is about $3-$10 and device deactivation cost is about $300-
$1000 per mine at removal rate of 100,000 per year [2]. 
Mines can exist in various environments especially in 
unstructured environment field. The nature mine field 
complicates demining operations. In general, mine clearance 
cost depends on various criteria which include: first the 
country budget resources, in the case of poor countries. 
Second the safety operations degree, if we consider that 
demining operations are performing manually in unsafe 
circumstances, and third the operation demining delay.  Use 
of robotic demining system represent a secure solution 
replacing dangerous human mine manipulation in 
unavailable mine field. The existing robot systems designed 
for demining operations have limited performances if we 
consider that these systems should explore unknown 

configuration field [3]. In addition, demining robots are 
equipped with high sophisticated technology instruments for 
mine detection and processing [4] rise mine clearance cost. 
Time optimization of demining operations becomes an 
important humanitarian objective if we consider the number 
of abandoned mines fields [5]. This optimization must 
respect security constraints attached to demining operator 
and enhance efficiency of demining tasks in time 
proceeding and energy consummation. According to [4, 
5],various assistant tools were designed and tested to help 
automation demining process, limit risk of human error, and 
rise estimation of risk zone. Substitution of human operators 
by robotic agent participates with appropriate strategy in the 
realization of this goal [6]. However, the sophisticated 
robots agents and the distributions variety of mines field, 
enhance the demining operations cost. This cost includes 
time demining operation, energy management, equipment, 
and security considerations. In this article, we explore the 
possible applications of multi-robot systems in time 
detection optimization of Mx% (maximum mine portion 
detected.) mines in particular case of field mine 
configuration. Adaptation of multi-robot systems for 
demining operations, induce the choice of an adaptable 
coordination algorithm. Demining operations are complex 
problems and they need meta-heuristic algorithms as 
coordination algorithms. Search and optimization 
algorithms have risen their exploration capabilities by 
including basic heuristic [7]. Many evolutionary algorithms 
like ant colony optimization, genetic algorithms etc. solve 
difficult optimization problems in a reduced amount of time 
with approximate solution. At this stage, ACO algorithms 
represent a coordination algorithm used to optimize 
demining operations time with adaptable considerations as 
an example for solving foraging robots problem. 

This paper is organized as follows. In Sect. 2, we present 
works related to multi-robots application on demining 
operations. In particular these works include configuration 
constraints in the case of mine distribution and size of 
robotic set, type of collaboration algorithms and 
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performances metrics. Sect. 3 presents field mine 
distribution and collaboration models used in demining 
operations. Sect. 4 describes simulation considerations for 
performed experiences. Sect. 5 lists and analyzes the 
simulations results. 

II. RELATED WORKS  

Multi-robots application in demining operations for 
humanitarian purposes represents an evaluation example of 
coordination strategy performance. Many researches such as 
[8-10] use specific coordination strategy in order to evaluate 
some criteria performances. General research organization 
starts with definition of collaboration Algorithms used in 
order to perform specific task. In our case we choose 
demining operations. Demining process includes many 
constraints related to the nature of minefield distribution and 
performance evaluation criteria. Some researches as in [8, 
10, 11] give statistical studies on variety of spatial mine 
distribution in minefield. In fact, mines field spatial 
distributions in conflict zones are highly complex and 
varied. Landmine descriptions can’t be defined easily with 
deterministic clustering approaches. Landmine variety 
induces different mine distribution patterns. Different mines 
distribution can be used to test hypotheses for demining 
operations. However, other assumptions have influence on 
performances evaluation systems. Combining the different 
parameters (incidents, populations, roads, agriculture field, 
etc.) for defining mine field map, would allow the 
consideration of environmental and social conditions [5]. 

Simulation example given in [3] tests real case minefield 
distributions in order to realize an automatic estimator to 
mines localization. Mines distribution configuration 
represents limitation if we work in unknown environment. 
But in several cases, mines distribution can be modeled by 
stochastic model like in [4, 5, 11]. In other part efficiency of 
demining operations depend of scenario followed for each 
robotic agent. 

In other part, the choice of collaboration strategy 
represents other constraint. In fact, demining operations 
with multi-robots systems raises complexity of collaboration 
interactions [8, 12]. In this case application of suitable meta-
heuristic algorithms for multi-robot demining operations 
was performed in research such as [13-16]. Research studies 
focus on combined and modified heuristic (as is the case for 
Genetic algorithms, ACO algorithms, etc.) to enhance 
general performances of multi-robots systems. As a result, 
studies as [17] define evaluation metrics to quantify 
collaboration performance cost. Localization and 
distribution robotic agents’ configuration was taken as 
evaluation criteria. These criteria de-pend on applications 
constraints like possible robot agents interference [18]. A set 
of generic performance metrics was employed to evaluate 
each aspect of robotic demining systems. These 
performance metrics include demining processing speed to 
measure time elapsed until demining operations can be 
totally or partially achieved. In the rest of experimentations 
we will focus on temporal performance optimization using 

modified meta-heuristic algorithms. In particular, 
configuration parameters for minefield and multi-robots 
systems as type of mine distributions and effects of robotic 
group size were treated in experimentations. Other 
performance metrics like: robotic agents displacements 
which represents aggregation of the distances inter-agent 
position during demining operations (consumed energy), 
Robotic Agents proportion of agents which ensure demining 
operations, and communication flow exchanged between 
agents during robots interactions; represent other 
optimization objectives and they will be treated in further 
works. 

III. METHODS AND HYPOTHESIS 

This part represents general configuration parameters for 
tested environment. These parameters include minefield 
distribution and adaptation of ACO algorithms for 
collaborative demining robotic foraging. 

A. Field mine configuration 

Measurement of demining operations time was 
performed at different values of configuration parameters. 
In first stage and in concordance with [19], we con-sider 
robotic set size as influential parameter. In fact, we vary 
robots/mines ratio (RM %) and note detection mines time 
for different minefield proportion (Mx %). Tested mines 
proportion was been fixed to 60%, 70%, 80% and 90% for a 
total number of 50 mines [4]. 

In other part, mine spatial distribution has possible effect 
in mine detection time [4, 5]. We try different spatial 
distributions which include: 

• 1st case: (random distribution) mines are placed 
randomly with uniform density of probability.  

• 2nd case: (fixed spatial distribution) second 
distribution is destined for fixed mine position. We 
try two different dispositions with limited mined 
zone. These two tests are indicated in Fig 1 and Fig 
2. In Fig 1 we divide mine field into two parts 
relatively to a vertical symmetry axe. P1 represents 
mined area zone. In figure 2 we divide mine field 
into four parts relatively to a vertical and horizontal 
symmetry axes and P3 represents mined area zone. 
Other parts are mine free. As presented in [20], in the 
case of environment symmetry, localization 
represents a complicated task. This complexity is due 
to correctness of robot position and orientation 
estimation (unknown mine land without specific 
information). Collaborative algorithms as for ACO 
algorithms can reduce elapsed time in mines research 
operations. 

• 3rd case :( random line distribution: Fig 3) Mine 
lines are randomly placed along the line or dropped 
with a constant spacing. The random lines are given 
a very broad margin of placement error. The random 
spacing lines are assumed to represent positioning 
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errors mainly due to navigation and drop timing 
errors. Random lines are assumed to have random 
orientation and mine spacing. But in this 
experimentations random mine lines are parallel [3]. 

 

 
Fig. 1. Fixed spatial distribution 1. 

 

Fig. 2. Fixed spatial distribution 2. 

 

Fig. 3. Random line distribution (s=1,µ=3 and areas dimensions=16x16). 

B. Navigation and research methods 

In this part, we will present mine research methods 
adopted by different robot agents. The evaluation of this 
methods effect is based on the time detection mines quality. 
In this experimentation, three main collaborative navigation 
algorithms were performed: 

• Method1: (model BASE) in this model, robot agents 
do not adopt a particular logic for mine research. So 
robot agents are not restricted with any constraints 
except some particular rule listed in fallow: 

o R1: when robot agent finds a mine. It 
must return to the base for deactivation 
mine operation. 

o R2: used base is fixed. 

o R3: all robot agents are placed in the base 
at the demining operations beginning. 

• Method2: (model ACO) in this part, robot agents 
adopt a mine research strategy based on ACO (Ant 
Colony Optimization) algorithm to find optimum 
demining operation. We save the same rules adopted 
in model BASE (R1 R2 R3). Used robot agents path 
is fixed by pheromone rate τ deposed by other 
searching agents. In this test we fixe evaporation 
pheromone rate ρ (static evaporation pheromone 
rate) and we calculate pheromone rate as fallow [21]: 

 τ(k) = τ(k−1)(1−ρ) (1) 

• Method3: (model modified ACO) the method 
adopted in this part is based on an ACO algorithm 
but with considering a mobile base in order to 
minimize base-mine displacement. Base coordinates 
are defined by Px and Py: 

 Px(k)=(Px(k-1)+Rix(k-1)) / 2 (2) 

 Py(k)=(Py(k-1)+Riy(k-1)) / 2 (3) 

The (Rix(k), Riy(k)) couple represent coordinates of 
recent detected minei. The idea presented was inspired from 
intensification and diversification [7, 22]. Diversification for 
robotic agent represents ability to demining many and 
different mine land regions. Intensification summarized in 
the ability of base guides demining operation in specific 
zones with high mine concentration. At this stage we can 
reserve robot agents for mine research and the base as a new 
agent for deactivating operations. 

IV. SIMULATION PROTOCOL 

In this section, we introduce general simulations 
protocols followed in collaborative algorithms efficiency 
validation. All simulations are performed with NetLogo [23, 
24]. NetLogo is used as software platform to simulate 
robotic agents and landmine map. In fact, NetLogo supports 
advanced modeling of complex systems using a library of 
java programming primitives. In NetLogo simulation 
environment robotic agents were modeled in simple design 
without consideration of collision avoidance. As given in 
Table 1 experience design was performed by variation of 
robots/mines rate and kind of landmine distributions. Each 
experience is repeated ten times using NetLogo API control. 
Mine detection time values was reported to MATLAB 
software platform in order to compare different con-
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figuration results. Each collaborative model was tested for 
various robots/mines rates and specific distributions. 

A simplified foraging scenario was taken to describe 
demining operations. Robots states include the searching 
and homing state. When a robot detects a mine, it picks up 
and come back toward neutralizing base. Execution 
demining time is accounted while a robot is either in 
searching mode or homing. Time of other robots avoidance 
is not considered in demining scenario. Fig 4 shows the 
state diagram for demining operations scenario. Robotic 
agents detect, collect mines and bring them to a mine 
neutralizing base. 

TABLE I.  SIMULATION PARAMETERS  

Model  RM% Distributions  

Base 10%-100% Random, fixed 1, fixed 2 and random line  
ACO 10%-100% Random, fixed 1, fixed 2 and random line 
Modified ACO 10%-100% Random, fixed 1, fixed 2 and random line 

 

 

Fig. 4. State diagram of a multi-robot demining system with base return 
(homing). 

V. RESULT AND INTERPRETATION 

Experimental studies in this article were performed for 
various mines/robots rate in order to test robotic set size 
influence on time demining optimization. Application of 
various mines/robots rate on presented mines distributions 
and collaboration models based on ACO algorithms, attest 
that rising robotic agents number (in order to minimize mine 
detection time) haven’t influence on system timing 
performances. In fact, rising robots/mines ratio (RM %) 
beyond 50% don’t affect time detection and this time was 
stabilized. Table 2 summarized means and deviation values 
of other stabilized time detection mine for different 
demining models (base, ACO and Modified ACO models) 
and detected mines proportion (60%-90%) ranges. Variation 
effects of distributions study cases are considered with mean 
values. 

TABLE II.  MEANS AND DEVIATIONS LIST OF MINE DETECTION TIME 
VALUES (RM% = 50%) 

Model Base ACO Modified 

ACO 

Mean time for 

all models 

Time for 
Mx%=90% 

mean 129.13 149.92 118.67 132.57 
deviation 9.31 10.68 22.37 

Time for 
Mx%=80% 

mean 100.88 117.25 93.04 103.72 
deviation 9.63 12.25 14.94 

Time for 
Mx%=70% 

mean 83.42 97.25 76.71 85.79 
deviation 9.85 11.81 9.78 

Time for 
Mx%=60% 

mean 70.17 80.54 64.79 71.83 
deviation 9.19 10.84 6.33 

 

TABLE III.  TIME CORRELATION VALUES TAKEN FOR MX%=90% AND 
RM% = 10% 

Model Correlation time results for different robots/mines ratio 

RM%=20% RM%=30% RM%=40% 

Base model 0,2072 -0,0045 0,9247 
ACO model 0,9972 0,9062 0,9893 
Modified ACO 
model 

0,9617 0,5755 0,9162 

 

Table 3 summarizes investigations about RM% effect on 
detection time results. It presents correlation values between 
detection times taken for RM%= 10% and other time values 
taken for increasing RM% (20%-40%). These 
experimentations were performed separately for each 
collaboration models with different mine distributions 
consideration. Correlations results between given tests in the 
case of RM%=10% and other RM% (20%, 30% and 40%) 
indicate high level of relation intensity between temporal 
system performances and RM%. This relation intensity is 
deteriorated in the case of base model. Best results are noted 
for ACO and modified ACO models (correlation values = 
0.9, except correlation value between RM%: 10%-30% = 
0.5755).  

Time detection variations are noted for RM% lower than 
50%. If we choose base model collaboration; best timing 
results are noted for random distributions (600 < time < 700 
simulation steps (s.t) for 90% mines detected). Demining 
operations take more time in the fixed distributions (= 800 
s.t for 90% mines detected) due that in base model 
collaboration, robots agents perform random movements 
with uniform density. Variations of mine detection time 
appear for RM% equal to 10%.  

 

TABLE IV.  MODELS TIMING PERFORMANCES FOR MX%=90% 

model distribution Time 

(RM% 

=10%) 

Time 

(RM% 

=20%) 

Time  

(RM% 

=30%) 

Time  

(RM% 

=40%) 

base Random 649 404 281 194 
Fixed1 777 400 271 206 
Fixed2 927 377 252 210 
Random line 631 338 233 186 

ACO Random 727 389 266 213 
Fixed1 820 440 320 242 
Fixed2 854 450 299 258 
Random line 686 368 243 207 

Modified 
ACO 

Random 715 353 239 215 
Fixed1 538 264 216 162 
Fixed2 592 282 184 155 
Random line 626 326 235 185 

 
This result can be explained by mine dispersion. In 

normal case robotic agents are guided by pheromone trace 
toward the food source which represents in our case mines. 
In real minefield mines are dispersed and robots are 



International Conference on Control, Engineering & Information Technology (CEIT’14) 
Proceedings - Copyright IPCO-2014, pp.96-102 
ISSN 2356-5608 
occupied in following trail with high pheromone 
concentration to demine one mine. This allocation of many 
robots whose demining one mine, overcrowds robots agents 
by unsuccessful demining tasks and amplify interference 
[18] effects in robots collaboration. Mine detection time is 
reduced in spatial fixed distributions (fixed distribution 2) in 
witch mined area was reduced to limited zone in order to 
group robotic efforts in the same area with higher mine 
concentration. If we consider low RM% reduced to 10% 
with fixed distribution 2, mine detection time (90% of mine 
detected) in base model (=927 s.t) was reduced in ACO 
model to ˜ 854 s.t. This improvement is degraded with 
higher RM%. (Table 4) 

If we consider 20%-40% range of RM%, use of 
modified ACO model enhance temporal system 
performances for fixed spatial mine field distributions in 
comparison with random distributions (random and line 
random distribution). In fact, time detection mine values, 
taken at RM%=40%, is 185 s.t for line random distribution 
and ˜ 162 s.t for fixed distributions (Table 4). 

In the case of distribution fixed 2, modified ACO model 
use reduces time detection results given with BASE and 
ACO models (detection time of modified ACO model = 
592s.t: Table 4). This observation is extended to other RM% 
in which we find better results than BASE and ACO models 
(Mx%=90%). 

Table 5 reports timing performances variations for 
different range variations Mx%, minefield distributions and 
using three simulation models: BASE, ACO and Modified 
ACO models. This prospection help to detect variations in 
demining acceleration for proportion detected mines 
between 60% and 90%. Time variation in mine detection 
∆Mx% reflects acceleration in demining operations for 
remaining mines. If we consider BASE and ACO models, 
demining time decreases are noted in fixed distribution 2 
under RM% equal to 10%. Time variations are reduced 
from 498 (s.t) in BASE model to 415 (s.t) in ACO model. 

TABLE V.  MODELS TIMING PERFORMANCES FOR RM% =10 % 

distributions ∆Mx% Base 

model 

(s.t) 

ACO 

model 

(s.t) 

Modified 

ACO model 

(s.t) 

Random 60%-70% 82 110 73 
60%-80% 175 206 183 
60%-90% 336 416 405 

Fixed 1 60%-70% 110 100 58 
60%-80% 210 232 146 
60%-90% 370 417 286 

Fixed 2 60%-70% 87 90 70 
60%-80% 235 207 151 
60%-90% 498 415 355 

Random line 60%-70% 72 87 87 
60%-80% 168 219 200 
60%-90% 326 376 373 

 
In the case of fixed distribution 2, demining detection 

time are extended for other RM% values (20%, 30%, and 
40%). At this stage, we remark that ACO algorithms applied 

as cooperative strategy for multi-robots systems reduce time 
demining operations for fixed type of mine field distribution 
and at lower RM%. In fact, Table 6 reports reduced time 
value for RM%=10% with fixed distribution 2 (498 (s.t) in 
BASE model, 415 (s.t) in ACO model). For the same 
∆Mx% variation (60%-90%), detection time rise in the case 
of ACO model with RM%=20% (from 196 (s.t) to 216 
(s.t)), 30% (from 122 (s.t) to 134 (s.t)) and 40% (from 98 
(s.t) to 132 (s.t)). 

TABLE VI.  ACO AND BASE MODEL TIMING PERFORMANCES (FIXED 
DISTRIBUTION 2) 

RM% ∆Mx% Base model ( s.t) ACO model (s.t) 

10% 60%-70% 87 90 
60%-80% 235 207 
60%-90% 498 415 

20% 60%-70% 39 49 
60%-80% 111 114 
60%-90% 196 216 

30% 60%-70% 39 30 
60%-80% 77 75 
60%-90% 122 134 

40% 60%-70% 29 25 
60%-80% 57 64 
60%-90% 98 132 

 
This observation (Table 6) can be explained by the 

nature of stigmergy [25-27] used in ACO algorithms. 
Coordination strategy is based on random pheromone 
dispersion and robots displacements are conditioned by 
pheromone density. In real applications like demining 
operations, objectives can’t be concentrated in one food 
nest. In addition, raising the number of robots raises 
pheromones concentration and results are deteriorated if 
RM% rises. A possible solution for the ACO algorithms 
temporal performance improvement is the change in the 
pheromone dispersion strategy in order to make hybrid 
systems with other meta-heuristic algorithms types. Another 
type of performance improvement is related to the 
environment constraints and robotic agent management 
rules. In fact, robotic agents take more processing time to 
achieve coming back demining operations to the base. The 
selected base has fixed coordinates. One possible solution is 
to allow more freedom degree to the base and take a mobile 
base. In this case, ACO algorithms modifications touch only 
behavioral aspects. New mobile base coordinates are 
calculated in relation of successful demining robotic agent 
coverage.  

Experimental results of base modified ACO algorithm 
model are presented in Table 5 in comparison with other 
models. For ∆Mx%=60%-90%, demining time 
performances enhances are detected for fixed distributions 
compared to BASE and ACO models (fixed 1 distribution: 
[modified ACO model: 286 s.t] < [BASE model: 370 s.t] < 
[ACO model: 417 s.t], fixed 2 distribution: [modified ACO 
model: 355 s.t] < [ACO model: 415 s.t] < [BASE model: 
498 s.t]). Results are taken under low RM% (10%). Also 
time enhances take place for random and line random 
distribution. Times results are better compared to ACO 
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model and approach results noted for BASE model (random 
distribution: [BASE model: 336 s.t] < [modified ACO 
model: 405 s.t] < [ACO model: 416 s.t], random line 
distribution: [BASE model: 326 s.t] < [modified ACO 
model: 373 s.t] < [ACO model: 376 s.t]). More results are 
presented in Table 7 in order to detect effect of RM% 
variations to perform time demining operations with 
modified ACO model for random distribution. 

TABLE VII.  MODELS TIMING PERFORMANCES COMPARISON (RANDOM 
DISTRIBUTION) 

RM% ∆Mx% Base 

model (s.t) 

ACO model 

(s.t) 

Modified ACO 

model (s.t) 

10% 60%-70% 82 100 73 
60%-80% 175 206 183 
60%-90% 336 416 405 

20% 60%-70% 52 50 33 
60%-80% 108 124 95 
60%-90% 239 222 191 

30% 60%-70% 30 35 37 
60%-80% 87 79 68 
60%-90% 169 150 124 

40% 60%-70% 24 24 30 
60%-80% 55 57 70 
60%-90% 108 114 118 

 
In the case of random distribution (Table 7), RM% has 

an impact on demining time acceleration enhance. For 
RM% equals to 20% and 30%, demining time variations 
associated to range of detected mines proportions 
(∆Mx%=60%-90%)  are reduced ([modified ACO model: 
from 191 s.t to 124 s.t] < [ACO model: from 222 s.t to 150 
s.t] < [BASE model: from 239 s.t to 169 s.t] ). But the same 
results was affected if RM% rise to 40% ([modified ACO 
model: 118 s.t] > [ACO model: 114 s.t] > [BASE model: 
108 s.t]). 

VI. CONCLUSION 

Experimentations performed with different collaboration 
models, including ACO based models and free motion 
robotic agents, led to some ascertainments: 

• Time performances stabilized for robots/mines rates 
= 50%. 

• Evaluation of time detection amelioration using base 
model for robots/mines rates < 50%: 10%, 20%, 
30%, and 40%. Time amelioration was noted for 
random distribution of robots agents in search mode. 
Bad results were noted for spatial fixed distribution. 
Random collaboration algorithm (in base model) 
present bad performance with spatial fixed 
distribution. ACO collaboration algorithm (in ACO 
model) present bad temporal performance with 
random and line random distribution. But it presents 
better results with static distribution (fixed 1 and 
fixed 2 distributions). 

• In the case of ACO model, use of lower robots/mines 
rate (10%) has better time processing results with 
static distribution. 

• Variation range of detected mines (∆Mx %) between 
60% and 90% presents better temporal result with 
fixed distribution in the case of ACO model. The 
variation range study of detected mines was 
introduced as performance indicator if we consider 
that demining operations take more time in higher 
detected mine proportion (Mx%). Use of lower 
robots/mines rate (10%) have also better time 
processing results with static distribution for ∆Mx 
%=60%-90%. 

• Modification of ACO algorithms with mobile base 
introduces time processing ameliorations for spatial 
fixed distribution. Temporal results for other random 
distributions were reduced in comparison with ACO 
model but still higher than the results presented in 
base model. 

• If we consider variation range of detected mines 
(∆Mx %) between 60% and 90%; Modified ACO 
model present better results in comparison with base 
and ACO model. 
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